Kris T. Huang, MD, PhD, CTO

 

All models are wrong.

But, some are useful.

 

The idea that “All models are wrong” is generally attributed to statistician George Box [1], but it certainly isn’t new. Of course, even though all models are wrong, it’s clear that some models are quite useful, and good models (should) encapsulate some insight that provides meaning to observed data and an explanation for predictions. A good model should provide insight into a system’s mechanism.

This more traditional scientific notion of the model concept is in fairly stark contrast to today’s growing reliance on so-called “black box” deep learning solutions for increasingly important decision processes. It’s not that deep learning methods are not understood, but the models produced by deep learning typically are, at least for the time being, not interpretable, i.e. they cannot provide explanation for the calculations that led to their predictions.

The need for insight doesn’t just apply to results, it also applies to model formation.

Continue reading “All models are wrong.”

Kris T. Huang, MD, PhD, CTO

Deep learning is a tool. Machine perception is a potential resultant ability, the ability of a machine to interpret data in a manner similar to humans. Being (very) loosely patterned after biological systems, deep neural networks (DNNs) are able to accomplish certain tasks, like image classification or playing Go, with apparent human-like and at times even super-human skill. With performance like that, it is easy to believe (i.e., extrapolate), that its behavior is human-like, or perhaps in some way better.

Continue reading “If Deep Learning Were Human…”

Sarah Kim, MD, CEO

Losing a loved one to cancer can be one of the hardest moments in your life. It might be difficult to be optimistic. I lost my aunt to breast cancer some 10 years ago. She was diagnosed in one country, but passed away in another. Even today, her memories keep me wondering whether there was anything that we could have done more to help prevent cancer in the first place, tried to catch it earlier, provided better treatment, or at least made her journey throughout more comfortable.

Continue reading “We Can Do Better”

Kris T. Huang, MD, PhD, CTO

Machine learning, and in particular so-called “deep learning,” is an undeniably powerful tool that has revolutionized certain types of classification problems, notably image/object recognition, speech recognition and synthesis, and automated language translation. The lay terms used in association with the field, like “neural,” “intelligence,” “deep,” and “learning,” evoke mental images of something brain-like or mind-like floating around in our computers, akin to an ancestor of HAL 9000. Combine these impressions with classification accuracies that rival or sometimes exceed human performance, and it is understandably convenient to ascribe human-like perceptual abilities to it.

Continue reading “Machine Learning Adversarial Attacks: It’s All Fun and Games Until Someone Gets Hurt”

Today we’re lifting the curtain on the machine perception technology behind Autofuse, and showing how it works step by step in a complicated head and neck case and a pediatric spine growth case using scans taken 31 months apart! We also provide a glimpse of the future of patient-specific QA for deformable registration, and how Autofuse technology can be used to monitor how radiation treatment to the spine affects vertebral body growth in children.

Continue reading “Video Look Behind the Curtain at Autofuse”